
Making QUICQuicker With NIC Offload
Xiangrui Yang

National University of Defense
Technology

CN

Lars Eggert
NetApp

Jörg Ott
Technical University of Munich

DE

Steve Uhlig
Queen Mary University of London

UK

Zhigang Sun
National University of Defense

Technology
CN

Gianni Antichi
Queen Mary University of London

UK

ABSTRACT
This paper aims at defining the right set of primitives a NIC shall
expose to efficiently offload the QUIC protocol. Although previous
work already partially tackled this problem, it has only considered
one specific aspect: the crypto module. We instead dissect differ-
ent QUIC implementations, and perform an in-depth analysis of
the cost associated to many of its components. We find that the
kernel to userspace communication, the crypto module and the
packet reordering algorithm are CPU hungry and often the cause of
application performance degradation. We use those findings to de-
fine an architecture for offloading QUIC and discuss the associated
challenges.

CCS CONCEPTS
• Networks → Network performance analysis; Network mea-
surement.

KEYWORDS
Network Profiling, Measurements, Acceleration
ACM Reference Format:
Xiangrui Yang, Lars Eggert, Jörg Ott, Steve Uhlig, Zhigang Sun, and Gianni
Antichi. 2020. Making QUIC Quicker With NIC Offload. In Workshop on
Evolution, Performance, and Interoperability of QUIC (EPIQ’20), August 10–14,
2020, Virtual Event, NY, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3405796.3405827

1 INTRODUCTION
The ever-increasing traffic workloads and the gradual slowdown in
CPU performance improvements are making end-host networking
progressively challenging [15, 19, 20]. Recently introduced Network
Interface Cards (NICs) with programmable hardware components,
e.g., network processor, FPGA, can help by easing the host CPU
from expensive computation tasks [16]. For this reason, nowadays
they are becoming commonplace in datacenter networks [17]. Rec-
ognizing this aspect, researchers have been looking into the role

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EPIQ’20, August 10–14, 2020, Virtual Event, NY, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8047-8/20/08.
https://doi.org/10.1145/3405796.3405827

of programmable NICs in the context of TCP offload [7, 29], load
balancing [8], consensus protocols [26] or key-value stores [28], to
name a few.

In this work, we explore their role in the context of QUIC [27],
a new transport protocol which is likely to serve a large fraction
of bytes on the Internet soon [14]. Although QUIC has proven
to improve the performance of connection-oriented web applica-
tions [27], it has also demonstrated to be CPU hungry, requiring
up to 3.5 more CPU cycles than TCP with TLS [27]. For this reason,
to fully realize its potential, defining new primitives for offloading
(part of) it on new programmable NICs becomes of primary im-
portance. While previous work advocating for QUIC offload [13]
has focused its attention on one only specific component of the
protocol, i.e., the crypto module, we argue that to have a complete
picture, it is required an in-depth analysis of the costs associated to
all of its components first.

We dissected four different implementations of QUIC (§ 2) to
better understand and compare the impact on CPU utilization of
different functions associated with the protocol: crypto, connection
setup & tear-down, ACK and packet reordering processing, packet
I/O and packet header formatting. We found that data copy between
user and kernel space accounts for 50% of the total CPU usage re-
lated to the protocol. Moreover, in the presence of a kernel-bypass
optimization, crypto operations become the new bottleneck, by
pushing the CPU resources usage up to 40% per connection. Finally,
the ratio of out-of-order packets, alongside the specific algorithm
being used to cope with packet reordering, has a significant influ-
ence on the total CPU usage1. With this in mind, we propose an
hardware/software co-design to accelerate QUIC (§ 3). We share the
challenges in designing the prototype on commodity FPGA-based
NICs and discuss possible pathways to overcome them.

In summary, the main contributions of this paper are:

• We present a measurement campaign carried over different
implementations of QUIC to evaluate the cost of its building
blocks in a number of scenarios, i.e., out-of-order packets,
losses.

• We share the lessons learned from the measurement analysis
and propose a hardware/software co-design of QUIC that
can be implemented on commodity NICs.

• We discuss the challenges associated to our design and pro-
pose solutions to overcome them.

1 The measurement results and scripts are open-sourced and will be maintained at
https://github.com/Winters123/QUIC-measurement-kit

https://doi.org/10.1145/3405796.3405827
https://doi.org/10.1145/3405796.3405827
https://doi.org/10.1145/3405796.3405827
https://github.com/Winters123/QUIC-measurement-kit
Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

EPIQ’20, August 10–14, 2020, Virtual Event, NY, USA Yang et al.

Server 2Server 1

QUIC Server

QUIC ClientQUIC ClientQUIC Client

NIC a

NIC b

NIC a

NIC b
Network Simulator

(pkt loss, out-of-
ordering, delay, etc.)

TLEM

File namespace #1

namespace #2

10GE

10GE

Figure 1: Testbed.

Table 1: The testbed settings.

CPU Intel Xeon Silver 4114 CPU, 2.2GHz
RAM 64GB
NIC driver ixgbe (offload features are disabled)
OS Ubuntu 18.10, Linux 4.18.0-25-generic
Emulator TLEM

2 MEASUREMENTS AND ANALYSIS
Nowadays, it is already possible to find many different implementa-
tions of QUIC [4]. They mainly differ by the programming language
being adopted, i.e., Java, C, Rust, and the draft version they comply
with, i.e., 20, 23, 25, 27. To quantify the potential bottlenecks in
QUIC implementation, we had first to pick some of them, poten-
tially implemented with the same programming language in order
to avoid as much as possible performance discrepancies due to
language-related compilation. In this regard, we decided to focus
our attention on Quant [3], Quicly [5], Picoquic [2] and Facebook’s
Mvfst [1]. This is because, (1) they all comply to the latest IETF
QUIC draft, e.g., 27; (2) they are all open-source, which is an im-
portant aspect as it allows us to add appropriate instrumentation
into their source code; (3) they are all implemented in C/C++, a
relative low-level language compared to the other available imple-
mentations. This last aspect allows us to avoid as much as possible
overheads created by the programming language abstractions. Fi-
nally, as Quant provides support for the netmap fast packet I/O
framework [33], it gives us a good comparison point to understand
the actual performance implications on the protocol when using
the standard Socket APIs versus kernel bypass techniques.

2.1 Testbed Settings
The testbed configuration being used in our tests is shown in Fig-
ure 1. It consists of two dual socket Dell PowerEdge R440 servers
running Ubuntu 18.10 (from now on we call them A and B). They
are connected via dual port 10G Intel NICs (UDP GSO features
are disabled from NICs). We install both QUIC server and client
on A and we pin both processes to different cores. We use B to
introduce a number of controlled traffic perturbations, i.e., loss,
delay, re-ordering, with the help of the TLEM toolkit [34]. In this
setting, traffic departing from A reaches B and then returns back to
A. Details are shown in Table 1. As a sample application, we transfer
50 MegaBytes from the server to the client and we repeat the same
test fifteen times. During the test, more rounds are applied but the
result doesn’t change significantly.

2.2 Single Connection Scenario
Here, we focus our attention on the performance of QUICwhen only
a single connection is used. We introduce a static 1ms delay with

crypto

conn. setup/teardown

ACK + pkt ordering
packet I/O

hdr formatting
0

10

20

30

40

50

60

C
PU

 ti
m

e
(%

)

quant
quicly
picoquic
mvfst

(a) server

crypto

conn. setup/teardown

ACK + pkt ordering
packet I/O

hdr formatting
0

10

20

30

40

50

C
PU

 ti
m

e
(%

)

quant
quicly
picoquic
mvfst

(b) client

Figure 2: CPU usage breakdown of both the QUIC server and
client.

TLEM to emulate the presence of a well-behaved network and we
measure the throughput as well as both client and server CPU uti-
lization. This first simple test can serve as baseline. The throughput
is calculated by instrumenting the code of each QUIC implementa-
tion. The CPU utilization has been obtained with perf [12], an open
source profiler tool. The results are shown in Table 2. Each imple-
mentation consumes similar amount of CPU time percentage (50%)
except Quant (90%). While Quicly, Picoquic and Mvfst achieve sim-
ilar throughput (<500Mbps), Quant reaches 4121Mbps on average,
which is around 10x higher than the other three. This performance
gap is related to the fact that Quant is configured in kernel-bypass
mode using netmap, while the other three implementations only
support standard socket APIs.

Table 2: Maximum throughput vs CPU usage.

Quant Quicly Picoquic Mvfst
throughput 4121Mbps 463Mbps 489Mbps 325Mbps
Server 90.1% 54.8% 60.4% 47.2%
Client 88.2% 52.3% 49.9% 46.4%

To gain a better insight into the four implementations, we break
down the overall CPU usage into the most representative functions
associated with the protocol: crypto, connection setup & tear-down,
ACK and packet reordering processing, packet I/O (socket system
calls, netmap processing) and QUIC packet header formatting. The
CPU profiling results of both the server and client are shown in
Figure 2. In Quicly, Picoquic andMvfst, the predominant CPU usage
is packet I/O, contributing over the 40% of the CPU time. In contrast,
for Quant it accounts only for 30%. The difference in CPU cost for
packet I/O correlates with the use of netmap instead of standard
socket APIs. Interestingly, over 40% of CPU time in Quant is spent

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Making QUICQuicker With NIC Offload EPIQ’20, August 10–14, 2020, Virtual Event, NY, USA

0 1 2 3 4 5 6 7 8 9 10
Reordering Rate (%)

0
350
700

1050
1400
1750
2100
2450
2800
3150
3500
3850
4200
4550

Th
ro

ug
hp

ut
 (M

bp
s)

(a) quant

0 1 2 3 4 5 6 7 8 9 10
Reordering Rate (%)

0
50

100
150
200
250
300
350
400
450
500

Th
ro

ug
hp

ut
 (M

bp
s)

(b) quicly

0 1 2 3 4 5 6 7 8 9 10
Reordering Rate (%)

0
50

100
150
200
250
300
350
400
450
500
550

Th
ro

ug
hp

ut
 (M

bp
s)

(c) picoquic

0 1 2 3 4 5 6 7 8 9 10
Reordering Rate (%)

0
50

100
150
200
250
300
350
400
450
500

Th
ro

ug
hp

ut
 (M

bp
s)

(d) mvfst

Figure 3: The throughput of Quant, Quicly, Mvfst and Picoquic under difference levels of out-of-order packets.

in dealing with the crypto functions. Specifically, enc_aead() and
dec_aead() calls, responsible for encrypting and decrypting each
packet, require up to 89% and 92% of the CPU time consumed by
the crypto part on the server and client, respectively.

The cost of out-of-order packets. Here we profiled the four im-
plementations in the presence of out-of-order packets. TLEM allows
to hold a given amount of packets for a fixed time period, while
letting others passing through. By carefully controlling this func-
tionality, and ensuring that the holding time is smaller than the
packet loss timeout set in the QUIC end points and the sequence
gap between reordered packets and normal packets is within the
packet number threshold, it is possible to fairly assess the cost of
out-of-order packets. In Figure 3, we show the throughput of all
four QUIC implementations when increasing the reordering rate,
i.e., holding time in TLEM. Interestingly, while Picoquic does not
experience any performance degradation, the other three show a
drastic reduction in throughput, even when only 1% of the total
packets exchanged between server and client are reordered. By
looking at the server congestion window size, we measure a 30/50x
decrease with respect to a normal scenario, which in turn justify the
huge throughput degradation. This suggests that Quant, Quicly and
Mvfst, in this scenario, treat the out-of-order packets as lost, even
though they arrive before the expiration of the packet loss timeout.
To confirm this, we access the available packet loss counters in the
QUIC server and saw an increasing value. We believe this might be
related to the inability of Quant, Quicly and Mvfst to handle out-of-
order packets timely, which in turn causes the packet loss timeout
to expire and a consequent shrink of the congestion window. In
contrast, Picoquic appears to be more resilient in this situation, at
the cost of about 26% CPU usage, which is indeed consumed by the
packet reordering function.

The importance of the packet reordering engine. The previ-
ous test has shown an important insight. Being able to deal as timely
as possible with packet reordering prevents from treating out-of-
order packets as losses, thus preventing the congestion window to
drop with consequences on the overall throughput. To better clarify
the importance of the packet reordering engine, we performedmore
tests on Picquic as it provides two different algorithms that deal
precisely with this problem. Specifically, a new version (commit ID:
2e5c3c3) uses a self-balancing binary search tree (splay tree), while
an older (commit ID: f4802c3) employs a linear search to reorder
packets upon arrival. Here, we ran a set of experiments that impose
an increasing percentage of packet loss. We show the obtained
results in Figure 4. We can see that the throughput drops more

0 1 2 3 4 5
Loss Rate (‰)

0

100

200

300

400

500

600

700

800

Th
ro

ug
hp

ut
 (M

bp
s)

picoquic-splay
picoquic-linear

0 1 2 3 4 5
Loss Rate (‰)

0

10

20

30

40

50

60

C
PU

 ti
m

e
(%

)

picoquic-linear
picoquic-splay

Figure 4: Picoquic throughput with different packet reorder-
ing algorithms (left) and the CPU time cost by reordering
packets (right) under packet loss.

rapidly when using linear searching, though it performs better in
the best case scenario (no packet reordering). CPU profiling results
indicate that this is mainly caused by the complexity difference
between linear and splay tree search: (𝑂

(
𝑛2

)
vs 𝑂 (𝑙𝑜𝑔𝑛), given n

the number of frames being handled. Linear search performs better
than splay tree without packet reordering since it always hits the
target in the first round of the loop (𝑂 (1)). In contrast, the splay
tree needs to be traversed every time a packet is received in order
to find the leftmost leaf.

2.3 Multiple Connections Scenario
Here, we consider the situationwheremultiple QUIC clients interact
with the same server. The tests take into consideration only Quicly,
Picoquic and Mvfst, as at the time of writing this paper, Quant does
not support multiple connection establishments on the server side.
We launched only one server process and pinned it to a specific core
which had no other working process on it. Our server counts a total
of 40 cores: this means that with our setup, when we instantiate
more than 39 connections, some clients will have to share the same
core. In our tests, we made sure the server never had to share
resources with any other process, and as long as we had cores
idle we kept new clients on free cores. We ran our tests using an
increasing number of clients, i.e., connections. Every client, when
activated, was requesting 50MB of data from the server.We repeated
the same test fifteen times.

In Figure 5 we show the per-connection average throughput we
obtained. The error bars represent 95th percentile and minimum.
In Figure 6, we show instead the aggregate throughput. Here we
can see that in both Quicly and Picoquic, it increases linearly (with
different rates) until the number of connections is bigger than 50. In
contrast, the maximum throughput of Mvfst is achieved only after

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

EPIQ’20, August 10–14, 2020, Virtual Event, NY, USA Yang et al.

1 11 21 31 41 51 61 71
Num of connections

0

100

200

300

400

500

Th
ro

ug
hp

ut
 (M

bp
s)

quicly_average
picoquic_average
mvfst_average

Figure 5: Per-flow average
throughput

1 11 21 31 41 51 61 71
Num of connections

0

1000

2000

3000

4000

Th
ro

ug
hp

ut
 (M

bp
s)

quicly_sum
picoquic_sum
mvfst_sum

Figure 6: Total average
throughput.

10 connections. Interestingly, while Quicly, Picoquic and Mvfst
have shown similar results in the single-flow scenario (Table 2),
here Picoquic and Mvfst outperform Quicly of about 4x when the
number of connections exceeds 40. This indicates that it is also
possible to achieve high throughput without using any kernel-
bypass techniques but instead relying on multiple connections.
Finally, we also measured the CPU usage in the multi-connection
scenario and saw that the major difference compared to the single
connection scenario is that the CPU time spent on packet sending,
e.g., pkt formatting, crypto, pkt I/O, has increased by about 10%.

Packet out-of-order and loss. Here we carried a similar set of ex-
periments we did for the single-connection scenario.We used a total
of 21 connections, launched simultaneously. In Figure 7, we show
that increasing the amount of out-of-order packets impacts nega-
tively on the aggregate throughput, similar to the single-connection
scenario. In Figure 8, we show instead the behavior of the two imple-
mentations when increasing the packet loss rate. As a confirmation
of our previous assumption regarding the importance of the packet
reordering engine, it is possible to see that Quicly shows almost
equal aggregate throughput when either 1% of packet loss or out-
of-order packets are enforced. Again, we stress that when creating
packet reordering we made sure that no packets would be received
by the QUIC end host after the packet loss timeout has expired. This
result strengthens our explanation that the failing to handle out-
of-order packets timely causes packet loss and further leads to the
decrease in the performance, e.g., throughput. Picoquic is proved
instead to be more resilient by producing an aggregate throughput
that fluctuates around 3.2Gbps. The throughput of Mvfst however,
was heavily influenced by both packet out-of-order and packet loss,
which indicates a potential bug in dealing with traffic perturbations.

2.4 Lessons Learned
Here we recap the main finding from the measurement campaign
carried out in the previous section.

Lesson #1: Data copy between user and kernel space costs around
50% of total CPU usage. This can be avoided by using kernel-bypass
techniques as adopted in Quant.

Lesson #2: In the presence of a kernel-bypass optimization, crypto
operations become the new most expensive operation, requiring
up to 40% of CPU resources per connection.

0 2 4 6 8
Reordering rate (%)

0
350
700

1050
1400
1750
2100
2450
2800
3150
3500
3850

Th
ro

ug
hp

ut
 (M

bp
s)

picoquic
quicly
mvfst

Figure 7: Average aggre-
gate throughput with dif-
ferent degrees of out-of-
order packets.

0 2 4 6 8
Loss rate (‰)

0
350
700

1050
1400
1750
2100
2450
2800
3150
3500
3850

Th
ro

ug
hp

ut
 (M

bp
s)

picoquic
quicly
mvfst

Figure 8: Average aggre-
gate throughput with dif-
ferent degrees of packet
loss.

Lesson #3:The algorithm dealingwith packet reordering is performance-
critical. A slow search can cause to treat out-of-order packets as
losses, thus pushing the congestion window to drop with conse-
quences on the throughput.

3 TOWARDS ACCELERATING QUIC
Here, capitalizing on the lessons learned from section §2, we discuss
an host-NIC co-design capable of offloading the most expensive
QUIC operations.

3.1 Design Guidelines
We identified three main characteristics that shall be guaranteed in
the first place:

1. ProvidingNIC-support forAEADoperations.QUIC encrypts
packets using AEAD (Authenticated Encryption with Associated
Data) algorithms and keys that are negotiated through the TLS
handshake [30]. Both packet and header protection are guaranteed
with those algorithms [6]. Our measurement campaign has high-
lighted the high costs associated to crypto operations (up to 40% of
the overall CPU usage), and specifically discovered that approxi-
mately 75%-80% of the CPU usage related to crypto operations are
consumed by the aead_enc() and aead_dec() methods. This is
an important aspect as the mentioned functions are stateless, thus
well positioned to be moved in the NIC data plane.

2. Moving packet reordering in the NIC. Once AEAD opera-
tions are moved into the hardware, it is possible to provide support
for packet reordering directly in the NIC. Indeed, once both data
and header are decrypted, it is possible to quickly identify the
packet sequence number and then design a reordering algorithm
taking into account the limited resources available in off-the-shelf
programmable NICs.

3. Keeping control operations in the host CPU. Control plane
related functions, i.e., TLS handshake, QUIC negotiation, generally
requires expensive stateful processing which is often not possible
in resource constrained environments such as the ones provided
by off-the-shelf programmable NICs. Furthermore, according to
our analysis they are not as performance critical to justify an hard-
ware implementation. Such a split-design between hardware and

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv
picoquic CC ignores loss

Making QUICQuicker With NIC Offload EPIQ’20, August 10–14, 2020, Virtual Event, NY, USA

congestion/flow control

Connection Table

connection setup/teardown

stream multiplexing

packet reorder engine

AEAD Data Protection

AEAD Header Protection

CPU NIC

NiQUIC process NiQUIC modules

PCIe

Figure 9: NiQUIC architecture.

software, however, need to provide an efficient synchronization
mechanism between host CPU and NIC to work.

3.2 Architecture
In Figure 9, we present a high-level view of our architecture, NiQUIC,
based on the guidelines discussed above. The NIC is in charge of
AEAD operations, enabling both packet and header protection, as
well taking care of reordering. The host CPU, in contrast, deals with
control plane operations, i.e., connection establishment/tear-down,
stream multiplexing, congestion control. The synchronization be-
tween hardware and software is guaranteed through the connection
table.

When the first packet belonging to a new connection arrives,
the host handles version negotiation as well as cryptographic and
transport handshakes. Here the hardware let all the packets going
up to the stack without interfering with them. Once the connection
is established, the host will add a new entry in the connection
table to inform the NIC about the presence of a new flow as well
as its connection ID and associated keys/cipher suite information
for both header and packet protection. This approach allows the
software to keep track of every offloaded connection and to decide
if a specific flow is worth offloading or not. This becomes important
considering the costs of writing to the connection table and the
limited amount of memory available in the hardware. For instance,
a short connection, e.g., a single HTTP GET request, might be well
served and managed directly by the host CPU. In such cases, the
host would not write anything in the connection table on the NIC.

The hardware design is shown in Figure 10. When a packet
arrives from the wire, the NIC first checks if its connection ID is
present in the connection table. If not, the packet is sent directly to
the host CPU. Otherwise, appropriate keys are retrieved and the
header is decrypted. Once this is done, the NIC can access the packet
number and use it in the reordering module. This will most likely
require the access to an off-chip memory such as DRAM which
can be used to store out-of-order packets. The last step relates to
the AEAD data protection module which is in charge to further
decrypting the packet in plain text. Noted that in the opposite
direction, i.e., from the host CPU to the wire, the reordering module
is bypassed.

3.3 Challenges
Here we discuss the challenges in implementing the proposed ar-
chitecture in a split hardware/software co-design.

AEAD Data
Protection

Module

Packet
Reorder
Module

AEAD Header
Protection

Module

cypher suite info, keys

id, pkt num

cypher suite info, keys

External
Memory
(DRAM)

pktincoming

outgoing

NiQUIC
Modules

D
M
A

E
n
g
i
n
e

N
i
Q
U
I
C

P
r
o
c
e
s
s

PCIe

Host
User space

NIC

···

conn id pkt num ···

pkt pkt

Connection Table

Figure 10: Key Modules in NiQUIC.

Hardware/Software synchronization. In our design this is ob-
tainedwith the connection table. However, commodity programmable
NICs provide limited memory resources [7, 29], thus imposing a
first challenge when designing this module. To alleviate the pres-
sure on memory while allowing the server to make the most of NIC
offloading, two approaches can be considered: (1) offloading only
long connections and let mice flows to be entirely handled by the
host CPU; (2) reduce the per-entry cost of the table by adopting
appropriate hashing techniques.

AEAD protection modules. Encryption and decryption are func-
tions commonly considered hardware-friendly [32] as they are
completely stateless and require only a series of mathematical op-
erations to be performed on the input data. They might however
introduce a significant amount of latency on the packet process-
ing compared to the CPU counterpart. This is because hardware
accelerators work generally at clock speeds of just hundreds of
MHz [24, 31, 36], ten times slower than commodity CPUs. This can
in turn affect the overall NIC throughput. To mitigate this problem,
we will consider leveraging the possibility to parallelize multiple
modules and let incoming packets being process by the first avail-
able decoder/encoder. Studying the trade-offs between memory
requirements and performance will be a matter of future work.

Packet reordering.Typical software implementations of packet re-
ordering engines employ a splay-tree type of data structure [2, 3, 5].
This is, however, not efficient in hardware. The reordering process
requires a memory read, to find where the newly arrived packet
shall be placed, and potentially multiple writes, to reorder the vari-
ous packets. While the read can be easily computed in hardware,
problems arise when the reordering takes place: a new out-of-order
packet might trigger multiple writing on the tree to move nodes
up or down. Additionally, if two consecutive packets hit the same
branch, it might not be possible to pipeline properly the read and
write operations with consequences on the overall performance.
We propose instead to use a TCAM that within just one clock cycle
allows to map a key, i.e., decrypted packet number in QUIC, to
a value, i.e., the address where the packet shall be stored in the
memory. In this way, the reordering process would be guaranteed
by construction: simply requesting reads on consequent packet
numbers in TCAM, by which packet addresses can be retrieved
perfectly in order. Additionally, an efficient timeout mechanism
need to be implemented to avoid packets being stuck into the NIC
for too long, waiting for out-of-order packets to arrive. Another

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

EPIQ’20, August 10–14, 2020, Virtual Event, NY, USA Yang et al.

challenge might be related to TCAM saturation: entries being satu-
rated when severe packet out-of-order occurs. Inspired by Large
Receive Offloading (LRO) [18], a potential solution to this would be
to merge 𝑁 adjacent packets into a single large packet and associate
to it just one packet number, which would lower the TCAM usage
by 𝑁 − 1.

4 RELATEDWORK
The closest work to the one presented in this paper was proposed
by Hay et al. [21], where the authors show the benefits on the QUIC
protocol of offloading both crypto and segmentation in hardware.
In this paper we take a step back, by first dissecting different QUIC
implementations and then proposing a new offload architecture
based on the obtained results. We now review the works more
closely related to both measurements and offloading architectures.

QUICmeasurements. In the recent past, the research community
has produced a number of works measuring QUIC performance [9,
10, 13, 14]. Some of them focus on the differences between QUIC
and HTTP/TCP [9, 10]. Others, investigated instead more on the
impact of QUIC on the host CPU/memory but taking into account
either only a specific implementation [14], or a building block [13],
i.e., crypto.

Networking protocol offloading.Offloading the entire or part of
the networking stack on reconfigurable hardware is a well explored
concept, especially in the context of TCP [7, 22, 29, 35]. This work
is a first step towards the understanding of the implications for the
QUIC protocols.

Crypto operations offloading. Several academic and industrial
works have explored the possibility of accelerating TLS using spe-
cialized hardware [23–25, 32]. Our proposed architecture does not
require full TLS offloading, but instead, considering the limited
available resources in off-the-shelf programmable NIC [7, 29], we
argue for the possibility of implementing only AEAD operations in
hardware.

5 CONCLUSIONS & LIMITATIONS
In this paper, we dissected four different implementations of QUIC.
By analyzing the CPU cost of different protocol building blocks, i.e.,
crypto, connection setup & tear-down, ACK and packet reordering
processing, packet I/O, packet header formatting and checksum,
we identified three main bottlenecks: (1) kernel network stack; (2)
crypto operations; (3) packet reordering. With this in mind, we
propose an hardware/software co-design to accelerate QUIC and
share the challenges in designing the prototype on commodity
FPGA-based NICs. We conclude the paper by discussing potential
pathways to overcome them. However, this paper currently doesn’t
investigate the performance influence brought by features like UDP
Generic Segmentation Offload and packet pacing [11] which may
improve or have potentially improved the overall performance.

ACKNOWLEDGEMENTS
We would like to acknowledge the anonymous reviewers for their
invaluable feedback on this paper. This research is supported by

the UK’s Engineering and Physical Sciences Research Council (EP-
SRC) under the EARL: sdn EnAbled MeasuRement for alL project
(Project Reference EP/P025374/1). Yang is also supported by the
China Scholarship Council.

REFERENCES
[1] 2020. Mvfst repository. https://github.com/facebookincubator/mvfst/commit/

5a203c90db34b15f3cecb7a71659ebb1f93bde6f.
[2] 2020. Picoquic repository. https://github.com/private-octopus/picoquic/commit/

2e5c3c31478f3696ac125c084abe36205b8b4626.
[3] 2020. Quant repository. https://github.com/NTAP/quant/commit/

8f63023ab04daa1b30a5de31e91f3c18dcb7f6f9.
[4] 2020. QUIC IETF Working Group Implementations. https://github.com/quicwg/

base-drafts/wiki/Implementations.
[5] 2020. Quicly repository. https://github.com/h2o/quicly/commit/

6637712da98fa11a6d90c6148cabb5266b8e61ec.
[6] 2020. Using TLS to Secure QUIC. https://quicwg.org/base-drafts/draft-ietf-quic-

tls.html.
[7] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,

David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport
Protocols in High-Speed NICs. In Networked Systems Design and Implementation
(NSDI). USENIX.

[8] Hitesh Ballani, Paolo Costa, Christos Gkantsidis, Matthew P. Grosvenor, Thomas
Karagiannis, Lazaros Koromilas, and Greg O’Shea. 2015. Enabling End-Host
Network Functions. In Special Interest Group on Data Communication (SIGCOMM).
ACM.

[9] Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. 2015. HTTP over UDP:
an Experimental Investigation of QUIC. In Symposium on Applied Computing
(SAC). ACM.

[10] Sarah Cook, Bertrand Mathieu, Patrick Truong, and Isabelle Hamchaoui. 2017.
QUIC: Better for what and for whom?. In International Conference on Communi-
cations (ICC). IEEE.

[11] Willem de Bruijn and Eric Dumazet. 2018. Optimizing UDP for content delivery:
GSO, pacing and zerocopy. In Linux Plumbers Conference.

[12] Arnaldo Carvalho De Melo. 2010. The new linux perf Tools. In Linux Kongress.
[13] Manasi Deval and Gregory Bowers. 2019. Technologies for accelerated QUIC

packet processing with hardware offloads. In Intel Corporation Patent. US Patent.
[14] Lars Eggert. 2020. Towards Securing the Internet of Things with QUIC. In

Decentralized IoT Systems and Security (DISS). The Internet Society.
[15] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,

and Doug Burger. 2011. Dark silicon and the end of multicore scaling. In Interna-
tional Symposium on Computer Architecture (ISCA). ACM.

[16] Daniel Firestone. 2019. Building hardware-accelerated networks at scale in
the c/guloud. https://conferences.sigcomm.org/sigcomm/2017/files/program-
kbnets/keynote-2.pdf.

[17] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mark Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, Harish K. Chandrappa, Somesh Chaturmohta, Matt Humphrey, Jack
Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri,
Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar,
Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018. Azure
Accelerated Networking: SmartNICs in the Public Cloud. In Networked Systems
Design and Implementation (NSDI). USENIX.

[18] Leonid Grossman. 2005. Large receive offload implementation in neterion 10GbE
Ethernet driver. In Linux Symposium.

[19] Nikos Hardavellas. 2012. The rise and fall of dark silicon. In ;login:, Volume: 37.
USENIX.

[20] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki.
2011. Toward dark silicon in servers. In Micro, Volume: 31, Issue: 4. IEEE.

[21] Joshua Hay, Maciej Machnikowski, Gregory Bowers, Natalia Wochtman, Joanna
Muniak, and Manasi Deval. 2019. Accelerating QUIC via Hardware Offloads
through a Socket Interface. In The Technical Conference on Linux Networking
(Netdev).

[22] Yatin Hoskote, Bradley A Bloechel, Gregory E Dermer, Vasantha Erraguntla,
David Finan, Jason Howard, Dan Klowden, Siva G Narendra, Greg Ruhl, James W
Tschanz, Sriram Vangal, Venkat Veeramachaneni, Howard Wilson, Jianping Xu,
and Nitin Borkar. 2003. A TCP Offload Accelerator for 10 Gb/s Ethernet in 90-nm
CMOS. Journal of Solid-State Circuits, Volume: 38, Issue: 11.

[23] Xiaokang Hu, Changzheng Wei, Jian Li, Brian Will, Ping Yu, Lu Gong, and Haib-
ing Guan. 2019. QTLS: High-Performance TLS Asynchronous Offload Framework
with Intel QuickAssist Technology. In Principles and Practice of Parallel Program-
ming (PPoPP). ACM.

[24] Takashi Isobe, Satoshi Tsutsumi, Koichiro Seto, Kenji Aoshima, and Kazutoshi
Kariya. 2010. 10 Gbps implementation of TLS/SSL accelerator on FPGA. In

https://github.com/facebookincubator/mvfst/commit/5a203c90db34b15f3cecb7a71659ebb1f93bde6f
https://github.com/facebookincubator/mvfst/commit/5a203c90db34b15f3cecb7a71659ebb1f93bde6f
https://github.com/private-octopus/picoquic/commit/2e5c3c31478f3696ac125c084abe36205b8b4626
https://github.com/private-octopus/picoquic/commit/2e5c3c31478f3696ac125c084abe36205b8b4626
https://github.com/NTAP/quant/commit/8f63023ab04daa1b30a5de31e91f3c18dcb7f6f9
https://github.com/NTAP/quant/commit/8f63023ab04daa1b30a5de31e91f3c18dcb7f6f9
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/quicwg/base-drafts/wiki/Implementations
https://github.com/h2o/quicly/commit/6637712da98fa11a6d90c6148cabb5266b8e61ec
https://github.com/h2o/quicly/commit/6637712da98fa11a6d90c6148cabb5266b8e61ec
https://quicwg.org/base-drafts/draft-ietf-quic-tls.html
https://quicwg.org/base-drafts/draft-ietf-quic-tls.html
https://conferences.sigcomm.org/sigcomm/2017/files/program-kbnets/keynote-2.pdf
https://conferences.sigcomm.org/sigcomm/2017/files/program-kbnets/keynote-2.pdf
Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Kothari, Apoorv

Making QUICQuicker With NIC Offload EPIQ’20, August 10–14, 2020, Virtual Event, NY, USA

International Workshop on Quality of Service (IWQoS). IEEE.
[25] Xiaowei Jiang. 2019. Cooperative TLS acceleration. US Patent.
[26] Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam, Yibo Zhu,

Hongqiang Harry Liu, Jitu Padhye, Shachar Raindel, Steven Swanson, Vyas
Sekar, and Srinivasan Seshan. 2018. Hyperloop: Group-based NIC-offloading to
Accelerate Replicated Transactions in Multi-tenant Storage Systems. In Special
Interest Group on Data Communication (SIGCOMM). ACM.

[27] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti,
Robbie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi Shi.
2017. The QUIC Transport Protocol: Design and Internet-Scale Deployment. In
Special Interest Group on Data Communication (SIGCOMM). ACM.

[28] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew
Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC. In Symposium on Operating
Systems Principles (SOSP). ACM.

[29] YoungGyoun Moon, SeungEon Lee Lee, Muhammad A. Jamshed, and Kyoung-
Soo Park Park. 2020. AccelTCP: Accelerating Network Applications with State-
ful TCP Offloading. In Networked Systems Design and Implementation (NSDI).

USENIX.
[30] Paul Morrissey, Nigel Smart, and Bogdan Warinschi. 2008. A modular secu-

rity analysis of the TLS handshake protocol. In Conference on the Theory and
Application of Cryptology and Information Security (ASIACRYPT). Springer.

[31] Netronome. 2018. Netronome AgilioTM CX 2x40GbE Intelligent Server
Adapter. https://www.netronome.com/media/redactor_files/PB_Agilio_CX_
2x40GbE.pdf.

[32] Boris Pismenny, Ilya Lesokhin, Liran Liss, and Haggai Eran. 2016. TLS offload to
network devices. In The Technical Conference on Linux Networking (Netdev).

[33] Luigi Rizzo. 2012. netmap: A Novel Framework for Fast Packet I/O. In Annual
Technical Conference (ATC). USENIX Association.

[34] Luigi Rizzo, Giuseppe Lettieri, and Vincenzo Maffione. 2016. Very high speed
link emulation with TLEM. In Local and Metropolitan Area Networks (LANMAN).
IEEE.

[35] Mario Ruiz, David Sidler, Gustavo Sutter, Gustavo Alonso, and Sergio Lopez-
Buedo. 2019. Limago: An FPGA-Based Open-Source 100 GbE TCP/IP Stack. In
Field Programmable Logic and Applications (FPL). IEEE.

[36] Noa Zilberman, Yury Audzevich, Adam G. Covington, and Andrew W. Moore.
2014. NetFPGA SUME: toward 100 Gbps as research commodity. InMicro, Volume:
34, Issue: 5. IEEE.

https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf

	Abstract
	1 Introduction
	2 Measurements and Analysis
	2.1 Testbed Settings
	2.2 Single Connection Scenario
	2.3 Multiple Connections Scenario
	2.4 Lessons Learned

	3 Towards accelerating QUIC
	3.1 Design Guidelines
	3.2 Architecture
	3.3 Challenges

	4 Related Work
	5 Conclusions & Limitations
	References

