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ABSTRACT
This paper aims at defining the right set of primitives a NIC shall
expose to efficiently offload the QUIC protocol. Although previous
work already partially tackled this problem, it has only considered
one specific aspect: the crypto module. We instead dissect differ-
ent QUIC implementations, and perform an in-depth analysis of
the cost associated to many of its components. We find that the
kernel to userspace communication, the crypto module and the
packet reordering algorithm are CPU hungry and often the cause of
application performance degradation. We use those findings to de-
fine an architecture for offloading QUIC and discuss the associated
challenges.

CCS CONCEPTS
• Networks → Network performance analysis; Network mea-
surement.
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1 INTRODUCTION
The ever-increasing traffic workloads and the gradual slowdown in
CPU performance improvements are making end-host networking
progressively challenging [15, 19, 20]. Recently introduced Network
Interface Cards (NICs) with programmable hardware components,
e.g., network processor, FPGA, can help by easing the host CPU
from expensive computation tasks [16]. For this reason, nowadays
they are becoming commonplace in datacenter networks [17]. Rec-
ognizing this aspect, researchers have been looking into the role
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of programmable NICs in the context of TCP offload [7, 29], load
balancing [8], consensus protocols [26] or key-value stores [28], to
name a few.

In this work, we explore their role in the context of QUIC [27],
a new transport protocol which is likely to serve a large fraction
of bytes on the Internet soon [14]. Although QUIC has proven
to improve the performance of connection-oriented web applica-
tions [27], it has also demonstrated to be CPU hungry, requiring
up to 3.5 more CPU cycles than TCP with TLS [27]. For this reason,
to fully realize its potential, defining new primitives for offloading
(part of) it on new programmable NICs becomes of primary im-
portance. While previous work advocating for QUIC offload [13]
has focused its attention on one only specific component of the
protocol, i.e., the crypto module, we argue that to have a complete
picture, it is required an in-depth analysis of the costs associated to
all of its components first.

We dissected four different implementations of QUIC (§ 2) to
better understand and compare the impact on CPU utilization of
different functions associated with the protocol: crypto, connection
setup & tear-down, ACK and packet reordering processing, packet
I/O and packet header formatting. We found that data copy between
user and kernel space accounts for 50% of the total CPU usage re-
lated to the protocol. Moreover, in the presence of a kernel-bypass
optimization, crypto operations become the new bottleneck, by
pushing the CPU resources usage up to 40% per connection. Finally,
the ratio of out-of-order packets, alongside the specific algorithm
being used to cope with packet reordering, has a significant influ-
ence on the total CPU usage1. With this in mind, we propose an
hardware/software co-design to accelerate QUIC (§ 3). We share the
challenges in designing the prototype on commodity FPGA-based
NICs and discuss possible pathways to overcome them.

In summary, the main contributions of this paper are:

• We present a measurement campaign carried over different
implementations of QUIC to evaluate the cost of its building
blocks in a number of scenarios, i.e., out-of-order packets,
losses.

• We share the lessons learned from the measurement analysis
and propose a hardware/software co-design of QUIC that
can be implemented on commodity NICs.

• We discuss the challenges associated to our design and pro-
pose solutions to overcome them.

1 The measurement results and scripts are open-sourced and will be maintained at
https://github.com/Winters123/QUIC-measurement-kit
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Figure 1: Testbed.

Table 1: The testbed settings.

CPU Intel Xeon Silver 4114 CPU, 2.2GHz
RAM 64GB
NIC driver ixgbe (offload features are disabled)
OS Ubuntu 18.10, Linux 4.18.0-25-generic
Emulator TLEM

2 MEASUREMENTS AND ANALYSIS
Nowadays, it is already possible to find many different implementa-
tions of QUIC [4]. They mainly differ by the programming language
being adopted, i.e., Java, C, Rust, and the draft version they comply
with, i.e., 20, 23, 25, 27. To quantify the potential bottlenecks in
QUIC implementation, we had first to pick some of them, poten-
tially implemented with the same programming language in order
to avoid as much as possible performance discrepancies due to
language-related compilation. In this regard, we decided to focus
our attention on Quant [3], Quicly [5], Picoquic [2] and Facebook’s
Mvfst [1]. This is because, (1) they all comply to the latest IETF
QUIC draft, e.g., 27; (2) they are all open-source, which is an im-
portant aspect as it allows us to add appropriate instrumentation
into their source code; (3) they are all implemented in C/C++, a
relative low-level language compared to the other available imple-
mentations. This last aspect allows us to avoid as much as possible
overheads created by the programming language abstractions. Fi-
nally, as Quant provides support for the netmap fast packet I/O
framework [33], it gives us a good comparison point to understand
the actual performance implications on the protocol when using
the standard Socket APIs versus kernel bypass techniques.

2.1 Testbed Settings
The testbed configuration being used in our tests is shown in Fig-
ure 1. It consists of two dual socket Dell PowerEdge R440 servers
running Ubuntu 18.10 (from now on we call them A and B). They
are connected via dual port 10G Intel NICs (UDP GSO features
are disabled from NICs). We install both QUIC server and client
on A and we pin both processes to different cores. We use B to
introduce a number of controlled traffic perturbations, i.e., loss,
delay, re-ordering, with the help of the TLEM toolkit [34]. In this
setting, traffic departing from A reaches B and then returns back to
A. Details are shown in Table 1. As a sample application, we transfer
50 MegaBytes from the server to the client and we repeat the same
test fifteen times. During the test, more rounds are applied but the
result doesn’t change significantly.

2.2 Single Connection Scenario
Here, we focus our attention on the performance of QUICwhen only
a single connection is used. We introduce a static 1ms delay with
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Figure 2: CPU usage breakdown of both the QUIC server and
client.

TLEM to emulate the presence of a well-behaved network and we
measure the throughput as well as both client and server CPU uti-
lization. This first simple test can serve as baseline. The throughput
is calculated by instrumenting the code of each QUIC implementa-
tion. The CPU utilization has been obtained with perf [12], an open
source profiler tool. The results are shown in Table 2. Each imple-
mentation consumes similar amount of CPU time percentage (50%)
except Quant (90%). While Quicly, Picoquic and Mvfst achieve sim-
ilar throughput (<500Mbps), Quant reaches 4121Mbps on average,
which is around 10x higher than the other three. This performance
gap is related to the fact that Quant is configured in kernel-bypass
mode using netmap, while the other three implementations only
support standard socket APIs.

Table 2: Maximum throughput vs CPU usage.

Quant Quicly Picoquic Mvfst
throughput 4121Mbps 463Mbps 489Mbps 325Mbps
Server 90.1% 54.8% 60.4% 47.2%
Client 88.2% 52.3% 49.9% 46.4%

To gain a better insight into the four implementations, we break
down the overall CPU usage into the most representative functions
associated with the protocol: crypto, connection setup & tear-down,
ACK and packet reordering processing, packet I/O (socket system
calls, netmap processing) and QUIC packet header formatting. The
CPU profiling results of both the server and client are shown in
Figure 2. In Quicly, Picoquic andMvfst, the predominant CPU usage
is packet I/O, contributing over the 40% of the CPU time. In contrast,
for Quant it accounts only for 30%. The difference in CPU cost for
packet I/O correlates with the use of netmap instead of standard
socket APIs. Interestingly, over 40% of CPU time in Quant is spent
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Figure 3: The throughput of Quant, Quicly, Mvfst and Picoquic under difference levels of out-of-order packets.

in dealing with the crypto functions. Specifically, enc_aead() and
dec_aead() calls, responsible for encrypting and decrypting each
packet, require up to 89% and 92% of the CPU time consumed by
the crypto part on the server and client, respectively.

The cost of out-of-order packets. Here we profiled the four im-
plementations in the presence of out-of-order packets. TLEM allows
to hold a given amount of packets for a fixed time period, while
letting others passing through. By carefully controlling this func-
tionality, and ensuring that the holding time is smaller than the
packet loss timeout set in the QUIC end points and the sequence
gap between reordered packets and normal packets is within the
packet number threshold, it is possible to fairly assess the cost of
out-of-order packets. In Figure 3, we show the throughput of all
four QUIC implementations when increasing the reordering rate,
i.e., holding time in TLEM. Interestingly, while Picoquic does not
experience any performance degradation, the other three show a
drastic reduction in throughput, even when only 1% of the total
packets exchanged between server and client are reordered. By
looking at the server congestion window size, we measure a 30/50x
decrease with respect to a normal scenario, which in turn justify the
huge throughput degradation. This suggests that Quant, Quicly and
Mvfst, in this scenario, treat the out-of-order packets as lost, even
though they arrive before the expiration of the packet loss timeout.
To confirm this, we access the available packet loss counters in the
QUIC server and saw an increasing value. We believe this might be
related to the inability of Quant, Quicly and Mvfst to handle out-of-
order packets timely, which in turn causes the packet loss timeout
to expire and a consequent shrink of the congestion window. In
contrast, Picoquic appears to be more resilient in this situation, at
the cost of about 26% CPU usage, which is indeed consumed by the
packet reordering function.

The importance of the packet reordering engine. The previ-
ous test has shown an important insight. Being able to deal as timely
as possible with packet reordering prevents from treating out-of-
order packets as losses, thus preventing the congestion window to
drop with consequences on the overall throughput. To better clarify
the importance of the packet reordering engine, we performedmore
tests on Picquic as it provides two different algorithms that deal
precisely with this problem. Specifically, a new version (commit ID:
2e5c3c3) uses a self-balancing binary search tree (splay tree), while
an older (commit ID: f4802c3) employs a linear search to reorder
packets upon arrival. Here, we ran a set of experiments that impose
an increasing percentage of packet loss. We show the obtained
results in Figure 4. We can see that the throughput drops more
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Figure 4: Picoquic throughput with different packet reorder-
ing algorithms (left) and the CPU time cost by reordering
packets (right) under packet loss.

rapidly when using linear searching, though it performs better in
the best case scenario (no packet reordering). CPU profiling results
indicate that this is mainly caused by the complexity difference
between linear and splay tree search: (𝑂

(
𝑛2

)
vs 𝑂 (𝑙𝑜𝑔𝑛), given n

the number of frames being handled. Linear search performs better
than splay tree without packet reordering since it always hits the
target in the first round of the loop (𝑂 (1)). In contrast, the splay
tree needs to be traversed every time a packet is received in order
to find the leftmost leaf.

2.3 Multiple Connections Scenario
Here, we consider the situationwheremultiple QUIC clients interact
with the same server. The tests take into consideration only Quicly,
Picoquic and Mvfst, as at the time of writing this paper, Quant does
not support multiple connection establishments on the server side.
We launched only one server process and pinned it to a specific core
which had no other working process on it. Our server counts a total
of 40 cores: this means that with our setup, when we instantiate
more than 39 connections, some clients will have to share the same
core. In our tests, we made sure the server never had to share
resources with any other process, and as long as we had cores
idle we kept new clients on free cores. We ran our tests using an
increasing number of clients, i.e., connections. Every client, when
activated, was requesting 50MB of data from the server.We repeated
the same test fifteen times.

In Figure 5 we show the per-connection average throughput we
obtained. The error bars represent 95th percentile and minimum.
In Figure 6, we show instead the aggregate throughput. Here we
can see that in both Quicly and Picoquic, it increases linearly (with
different rates) until the number of connections is bigger than 50. In
contrast, the maximum throughput of Mvfst is achieved only after
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10 connections. Interestingly, while Quicly, Picoquic and Mvfst
have shown similar results in the single-flow scenario (Table 2),
here Picoquic and Mvfst outperform Quicly of about 4x when the
number of connections exceeds 40. This indicates that it is also
possible to achieve high throughput without using any kernel-
bypass techniques but instead relying on multiple connections.
Finally, we also measured the CPU usage in the multi-connection
scenario and saw that the major difference compared to the single
connection scenario is that the CPU time spent on packet sending,
e.g., pkt formatting, crypto, pkt I/O, has increased by about 10%.

Packet out-of-order and loss. Here we carried a similar set of ex-
periments we did for the single-connection scenario.We used a total
of 21 connections, launched simultaneously. In Figure 7, we show
that increasing the amount of out-of-order packets impacts nega-
tively on the aggregate throughput, similar to the single-connection
scenario. In Figure 8, we show instead the behavior of the two imple-
mentations when increasing the packet loss rate. As a confirmation
of our previous assumption regarding the importance of the packet
reordering engine, it is possible to see that Quicly shows almost
equal aggregate throughput when either 1% of packet loss or out-
of-order packets are enforced. Again, we stress that when creating
packet reordering we made sure that no packets would be received
by the QUIC end host after the packet loss timeout has expired. This
result strengthens our explanation that the failing to handle out-
of-order packets timely causes packet loss and further leads to the
decrease in the performance, e.g., throughput. Picoquic is proved
instead to be more resilient by producing an aggregate throughput
that fluctuates around 3.2Gbps. The throughput of Mvfst however,
was heavily influenced by both packet out-of-order and packet loss,
which indicates a potential bug in dealing with traffic perturbations.

2.4 Lessons Learned
Here we recap the main finding from the measurement campaign
carried out in the previous section.

Lesson #1: Data copy between user and kernel space costs around
50% of total CPU usage. This can be avoided by using kernel-bypass
techniques as adopted in Quant.

Lesson #2: In the presence of a kernel-bypass optimization, crypto
operations become the new most expensive operation, requiring
up to 40% of CPU resources per connection.
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Lesson #3:The algorithm dealingwith packet reordering is performance-
critical. A slow search can cause to treat out-of-order packets as
losses, thus pushing the congestion window to drop with conse-
quences on the throughput.

3 TOWARDS ACCELERATING QUIC
Here, capitalizing on the lessons learned from section §2, we discuss
an host-NIC co-design capable of offloading the most expensive
QUIC operations.

3.1 Design Guidelines
We identified three main characteristics that shall be guaranteed in
the first place:

1. ProvidingNIC-support forAEADoperations.QUIC encrypts
packets using AEAD (Authenticated Encryption with Associated
Data) algorithms and keys that are negotiated through the TLS
handshake [30]. Both packet and header protection are guaranteed
with those algorithms [6]. Our measurement campaign has high-
lighted the high costs associated to crypto operations (up to 40% of
the overall CPU usage), and specifically discovered that approxi-
mately 75%-80% of the CPU usage related to crypto operations are
consumed by the aead_enc() and aead_dec() methods. This is
an important aspect as the mentioned functions are stateless, thus
well positioned to be moved in the NIC data plane.

2. Moving packet reordering in the NIC. Once AEAD opera-
tions are moved into the hardware, it is possible to provide support
for packet reordering directly in the NIC. Indeed, once both data
and header are decrypted, it is possible to quickly identify the
packet sequence number and then design a reordering algorithm
taking into account the limited resources available in off-the-shelf
programmable NICs.

3. Keeping control operations in the host CPU. Control plane
related functions, i.e., TLS handshake, QUIC negotiation, generally
requires expensive stateful processing which is often not possible
in resource constrained environments such as the ones provided
by off-the-shelf programmable NICs. Furthermore, according to
our analysis they are not as performance critical to justify an hard-
ware implementation. Such a split-design between hardware and
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Figure 9: NiQUIC architecture.

software, however, need to provide an efficient synchronization
mechanism between host CPU and NIC to work.

3.2 Architecture
In Figure 9, we present a high-level view of our architecture, NiQUIC,
based on the guidelines discussed above. The NIC is in charge of
AEAD operations, enabling both packet and header protection, as
well taking care of reordering. The host CPU, in contrast, deals with
control plane operations, i.e., connection establishment/tear-down,
stream multiplexing, congestion control. The synchronization be-
tween hardware and software is guaranteed through the connection
table.

When the first packet belonging to a new connection arrives,
the host handles version negotiation as well as cryptographic and
transport handshakes. Here the hardware let all the packets going
up to the stack without interfering with them. Once the connection
is established, the host will add a new entry in the connection
table to inform the NIC about the presence of a new flow as well
as its connection ID and associated keys/cipher suite information
for both header and packet protection. This approach allows the
software to keep track of every offloaded connection and to decide
if a specific flow is worth offloading or not. This becomes important
considering the costs of writing to the connection table and the
limited amount of memory available in the hardware. For instance,
a short connection, e.g., a single HTTP GET request, might be well
served and managed directly by the host CPU. In such cases, the
host would not write anything in the connection table on the NIC.

The hardware design is shown in Figure 10. When a packet
arrives from the wire, the NIC first checks if its connection ID is
present in the connection table. If not, the packet is sent directly to
the host CPU. Otherwise, appropriate keys are retrieved and the
header is decrypted. Once this is done, the NIC can access the packet
number and use it in the reordering module. This will most likely
require the access to an off-chip memory such as DRAM which
can be used to store out-of-order packets. The last step relates to
the AEAD data protection module which is in charge to further
decrypting the packet in plain text. Noted that in the opposite
direction, i.e., from the host CPU to the wire, the reordering module
is bypassed.

3.3 Challenges
Here we discuss the challenges in implementing the proposed ar-
chitecture in a split hardware/software co-design.

AEAD Data 
Protection 

Module

Packet 
Reorder 
Module

AEAD Header 
Protection 

Module

cypher suite info, keys

id, pkt num

cypher suite info, keys

External 
Memory
(DRAM)

pktincoming

outgoing

NiQUIC 
Modules

D
M
A
 
E
n
g
i
n
e

N
i
Q
U
I
C

P
r
o
c
e
s
s

PCIe

Host
User space

NIC

···

conn id pkt num ···

pkt pkt

Connection Table

Figure 10: Key Modules in NiQUIC.

Hardware/Software synchronization. In our design this is ob-
tainedwith the connection table. However, commodity programmable
NICs provide limited memory resources [7, 29], thus imposing a
first challenge when designing this module. To alleviate the pres-
sure on memory while allowing the server to make the most of NIC
offloading, two approaches can be considered: (1) offloading only
long connections and let mice flows to be entirely handled by the
host CPU; (2) reduce the per-entry cost of the table by adopting
appropriate hashing techniques.

AEAD protection modules. Encryption and decryption are func-
tions commonly considered hardware-friendly [32] as they are
completely stateless and require only a series of mathematical op-
erations to be performed on the input data. They might however
introduce a significant amount of latency on the packet process-
ing compared to the CPU counterpart. This is because hardware
accelerators work generally at clock speeds of just hundreds of
MHz [24, 31, 36], ten times slower than commodity CPUs. This can
in turn affect the overall NIC throughput. To mitigate this problem,
we will consider leveraging the possibility to parallelize multiple
modules and let incoming packets being process by the first avail-
able decoder/encoder. Studying the trade-offs between memory
requirements and performance will be a matter of future work.

Packet reordering.Typical software implementations of packet re-
ordering engines employ a splay-tree type of data structure [2, 3, 5].
This is, however, not efficient in hardware. The reordering process
requires a memory read, to find where the newly arrived packet
shall be placed, and potentially multiple writes, to reorder the vari-
ous packets. While the read can be easily computed in hardware,
problems arise when the reordering takes place: a new out-of-order
packet might trigger multiple writing on the tree to move nodes
up or down. Additionally, if two consecutive packets hit the same
branch, it might not be possible to pipeline properly the read and
write operations with consequences on the overall performance.
We propose instead to use a TCAM that within just one clock cycle
allows to map a key, i.e., decrypted packet number in QUIC, to
a value, i.e., the address where the packet shall be stored in the
memory. In this way, the reordering process would be guaranteed
by construction: simply requesting reads on consequent packet
numbers in TCAM, by which packet addresses can be retrieved
perfectly in order. Additionally, an efficient timeout mechanism
need to be implemented to avoid packets being stuck into the NIC
for too long, waiting for out-of-order packets to arrive. Another
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challenge might be related to TCAM saturation: entries being satu-
rated when severe packet out-of-order occurs. Inspired by Large
Receive Offloading (LRO) [18], a potential solution to this would be
to merge 𝑁 adjacent packets into a single large packet and associate
to it just one packet number, which would lower the TCAM usage
by 𝑁 − 1.

4 RELATEDWORK
The closest work to the one presented in this paper was proposed
by Hay et al. [21], where the authors show the benefits on the QUIC
protocol of offloading both crypto and segmentation in hardware.
In this paper we take a step back, by first dissecting different QUIC
implementations and then proposing a new offload architecture
based on the obtained results. We now review the works more
closely related to both measurements and offloading architectures.

QUICmeasurements. In the recent past, the research community
has produced a number of works measuring QUIC performance [9,
10, 13, 14]. Some of them focus on the differences between QUIC
and HTTP/TCP [9, 10]. Others, investigated instead more on the
impact of QUIC on the host CPU/memory but taking into account
either only a specific implementation [14], or a building block [13],
i.e., crypto.

Networking protocol offloading.Offloading the entire or part of
the networking stack on reconfigurable hardware is a well explored
concept, especially in the context of TCP [7, 22, 29, 35]. This work
is a first step towards the understanding of the implications for the
QUIC protocols.

Crypto operations offloading. Several academic and industrial
works have explored the possibility of accelerating TLS using spe-
cialized hardware [23–25, 32]. Our proposed architecture does not
require full TLS offloading, but instead, considering the limited
available resources in off-the-shelf programmable NIC [7, 29], we
argue for the possibility of implementing only AEAD operations in
hardware.

5 CONCLUSIONS & LIMITATIONS
In this paper, we dissected four different implementations of QUIC.
By analyzing the CPU cost of different protocol building blocks, i.e.,
crypto, connection setup & tear-down, ACK and packet reordering
processing, packet I/O, packet header formatting and checksum,
we identified three main bottlenecks: (1) kernel network stack; (2)
crypto operations; (3) packet reordering. With this in mind, we
propose an hardware/software co-design to accelerate QUIC and
share the challenges in designing the prototype on commodity
FPGA-based NICs. We conclude the paper by discussing potential
pathways to overcome them. However, this paper currently doesn’t
investigate the performance influence brought by features like UDP
Generic Segmentation Offload and packet pacing [11] which may
improve or have potentially improved the overall performance.
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